Abstract

We develop a new finite difference method for the wave equation in second order form. The finite difference operators satisfy a summation-by-parts (SBP) property. With boundary conditions and material interface conditions imposed weakly by the simultaneous-approximation-term (SAT) method, we derive energy estimates for the semi-discretization. In addition, error estimates are derived by the normal mode analysis. The proposed method is termed as energy-based because of its similarity with the energy-based discontinuous Galerkin method. When imposing the Dirichlet boundary condition and material interface conditions, the traditional SBP-SAT discretization uses a penalty term with a mesh-dependent parameter, which is not needed in our method. Furthermore, numerical dissipation can be added to the discretization through the boundary and interface conditions. We present numerical experiments that verify convergence and robustness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.