Abstract

In this work, a prognostics framework to predict the evolution of damage in fiber-reinforced composites materials un- der fatigue loads is proposed. The assessment of internal damage thresholds is a challenge for fatigue prognostics in composites due to inherent uncertainties, existence of multiple damage modes, and their complex interactions. Our framework considers predicting the balance of release strain energies from competing damage modes to establish a reference threshold for prognostics. The approach is demonstrated on data collected from a run-to-failure tension-tension fatigue experiment measuring the evolution of fatigue damage in carbon-fiber-reinforced polymer (CFRP) cross-ply laminates. Results are presented for the prediction of expected degradation by micro-cracks for a given panel with the associated uncertainty estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.