Abstract
In a cloud environment, computing resources are available to users, and they pay only for the used resources. Task scheduling is considered as the most important issue in cloud computing which affects time and energy consumption. Task scheduling algorithms may use different procedures to distribute precedence to subtasks which produce different makespan in a heterogeneous computing system. Also, energy consumption can be different for each resource that is assigned to a task. Many heuristic algorithms have been proposed to solve task scheduling as an NP-hard problem. Most of these studies have been used to minimize the makespan. Both makespan and energy consumption are considered in this paper and a task scheduling method using a combination of cultural and ant colony optimization algorithm is presented in order to optimize these purposes. The basic idea of the proposed method is to use the advantages of both algorithms while avoiding the disadvantages. The experimental results using C# language in cloud azure environment show that the proposed algorithm outperforms previous algorithms in terms of energy consumption and makespan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Cloud Applications and Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.