Abstract
Recently, how to reduce huge energy consumption of data centers has caught wide attention in cloud computing. One effective way is to improve the energy efficiency of servers. To achieve this goal, we propose a new energy-aware multi-job scheduling model based on MapReduce in this paper. In the proposed model, first, the variation of energy consumption with the performance of servers is taken into account; second, since network bandwidth is a relatively limited resource in cloud computing, 100 % data locality is guaranteed; last but not least, considering that task-scheduling strategies depend directly on data placement policies, we formulate the problem as an integer bi-level programming model. It is worth noticing that there are usually tens of thousands of tasks to be scheduled in the cloud, so this is a large-scale optimization problem. In order to solve it efficiently, a local search operator is specifically designed, based on which, a bi-level genetic algorithm is proposed in this paper. Finally, numerical experiments indicate the effectiveness of the proposed model and algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.