Abstract
Adequate tar removal is a recurrent challenge for biomass gasification. Materials such as char and activated char are promising catalysts for tar reforming because of their activity, inexpensiveness, and constant production during gasification. Although the behavior of char and activated char as catalysts has been previously studied, an evaluation of the thermodynamic efficiencies of the tar reforming process using char as a catalyst still lacking. This work analyzes the performance of a two-stage system, where gasification is followed by tar reforming using char catalysts. For the study, a model based in a combination of equilibrium thermodynamics and chemical kinetics was developed. The first stage, where gasification occurs, was simulated with a thermodynamic equilibrium model. Gasification equilibrium models available in the literature only predict the fractions of H2, CO, CO2, and CH4; the model developed for this work also predicts the formation of a three-model tar with different characteristics (b...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.