Abstract

Supercritical Water Gasification is an efficient technology in converting wet biomass into H2 and CH4 in comparison to other conventional thermochemical processes. Coke deposition, however, remains as a major challenge in this technology. Coke formation is the result of polymerization reactions that take place at sub-critical conditions. Directly injecting the relatively unheated wet biomass feed into supercritical water increases the heating rate and reduces the residence time of the feed in the sub-critical condition. This leads to a minimized coke formation in the process. However, a non-isothermal mixing takes place during this direct injection that is less energy-efficient. In addition, the biomass feedstream experiences less pre-heating that means less heat recovery from the product gas. These two aspects might reduce the overall process performance. Parametric studies of key operating parameters, such as operating temperature, dry matter content, bypass water ratio and heat exchanger effectiveness, are carried out to investigate the influence of direct injection to the thermal efficiency of the system. Subsequently, optimization using pinch analysis is conducted to the system with direct injection. Finally, an operating window for optimum performance of the optimized direct injection gasification system is proposed.

Highlights

  • At present, the world relies heavily on fossil fuel as its major source of energy for transportation, heating and electricity generation

  • The current study considers two types of processes that are based on VERENA pilot plant in Germany, the Reference Premixed (RP) system [21] and the Direct Injection (DI) system [22]

  • Implementing a direct injection system at reactor conditions of 575 ̊C and 25 MPa, a 0.4 bypass water ratio and an equal total dry matter content decreases the efficiency by approximately 8% - 23% points, in comparison to the reference system with only premixed biomass

Read more

Summary

Introduction

The world relies heavily on fossil fuel as its major source of energy for transportation, heating and electricity generation. There is a considerable amount of biomass available [1], a substantial part is not suitable for common conversion processes as it contains over 80 wt% of water. These highly aqueous sources are termed wet biomass and some examples are food waste, sewage sludge and manure. To overcome the high water content, supercritical water gasification (SCWG) is one of the technologies that can be used, and it is currently considered to be the most efficient technology to process wet biomass [2]

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.