Abstract
The objective of this work is to study fracture processes such as crack initiation and arrest in epoxy. A compact tension specimen with displacement-controlled loading is employed to observe multiple crack initiations and arrests. The energy release rate at crack initiation is significantly higher than that at crack arrest, as has been observed elsewhere. In this study the difference between these energy release rates is found to depend on specimen size (scale effect), and is quantitatively related to the fracture surface morphology. The scale effect, similar to that in strength theory, is conventionally attributed to the statistics of defects which control the fracture process. Triangular shaped ripples, deltoids, are formed on the fracture surface of the epoxy during the slow sub-critical crack growth, prior to the smooth mirror-like surface characteristic of fast cracks. The deltoids are complimentary on the two crack faces which excludes any inelastic deformation from consideration. The deltoids are analogous to the ripples created on a river surface downstream from a small obstacle. However, in spite of our expectation based on this analogy and the observed scale effect, there are no ‘defects’ at the apex of the deltoids detectable down to the 0.1 micron level. This suggests that the formation of deltoids during the slow process of sub-critical crack growth is an intrinsic feature of the fracture process itself, triggered by inhomogeneity of material on a sub-micron scale. This inhomogeneity may be related to a fluctuation in the cross-link density of the epoxy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.