Abstract

We present a novel end-to-end trainable neural network model for task-oriented dialog systems. The model is able to track dialog state, issue API calls to knowledge base (KB), and incorporate structured KB query results into system responses to successfully complete task-oriented dialogs. The proposed model produces well-structured system responses by jointly learning belief tracking and KB result processing conditioning on the dialog history. We evaluate the model in a restaurant search domain using a dataset that is converted from the second Dialog State Tracking Challenge (DSTC2) corpus. Experiment results show that the proposed model can robustly track dialog state given the dialog history. Moreover, our model demonstrates promising results in producing appropriate system responses, outperforming prior end-to-end trainable neural network models using per-response accuracy evaluation metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.