Abstract

Network slicing is emerging as a promising solution for end-to-end resource management and orchestration together with Software Defined Networking (SDN) and Network Function Virtualization (NFV) technologies. In this paper, a comprehensive network slicing framework is presented to achieve end-to-end (E2E) QoS provisioning among customized services in 5G-driven VANETs. The proposed scheme manages the cooperation of both RAN and Core Network (CN), using SDN, NFV and Edge Computing technologies. Furthermore, a dynamic radio resource slice optimization scheme is formulated mathematically, that handles a mixture of mission-critical and best effort traffic, by delivering the QoS provisioning of Ultra-reliability and low latency. The proposed scheme adjusts the optimal bandwidth slicing and dynamically adapts to instantaneous network load conditions in a way that a targeted performance is guaranteed. The problem is solved using a Genetic Algorithm (GA) and results are compared with the previously proposed 5 G VANET architecture. Simulation reveal that the proposed slicing framework is able to optimize resources and deliver on the key performance metrics for mission critical communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call