Abstract

Deep convolution neural network has become the primary framework for semantic image segmentation in recent years, and most existing methods using deep learning have achieved a great improvement on the performance compared with traditional methods. Although most methods using fully convolutional networks are concerned about the segmentation of small objects or small/fine parts of objects, the small object segmentation is still a challenging problem. To the best of our knowledge, the main reason is that several pooling or convolution operations with two or more stride size cause the features of small objects to vanish in later layers, even if taking different kinds of multi-scale measures. In the paper, we design a novel differential network which addresses the small object segmentation. Specifically, our networks include two pipelines: the first pipeline is served as the primary segmentation network using existing methods, and the second one is a refine network that we propose. The score maps of two networks are merged by calculating the sum of corresponding channels in their last layers. We first learn the primary segmentation network to get a coarse segmentation model, and then train the two networks jointly in an end-to-end fashion. Experiments show that our method can deal with small objects effectively. The segmentation performance of our method on PASCAL VOC 2012 dataset is superior to the state-of-the-art methods using only the primary segmentation model without applying a differential network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call