Abstract
The development of artificial intelligence, especially deep learning engineering technology, has made auto-driving cars more and more realistic. The end-to-end auto-driving method is an automatic driving system which is different from the rule-based system of. It uses the data from the environment to output vehicle control information solutions directly, greatly reducing the system complexity. 3D Lidar is the core sensor of automatic driving system. In this paper, a deep convolution neural network is designed for the end-to-end automatic driving method. This paper uses 64-line 3D Lidar data and transformation algorithm, transforms the 3D Lidar point-cloud data into depth images which can be used directly by an end-to-end deep learning network. This paper matches 3D Lidar data with vehicle-mounted Can bus data to obtain data and tags which will be feed into the deep learning network. The output of the deep learning network is the controlling information that directly acts on the vehicle. Based on experimental verification, the end - to - end automatic driving method based on 3D Lidar is of great value and potential for further development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.