Abstract

Surgical 3D endoscopy based on structured illumination has been built and evaluated for application in minimally invasive anastomosis surgery which offers advantages of smaller incision, low risk of infection, quick recovery times and reduced blood loss. When combined with robotic manipulations, surgeons can perform surgical tasks with higher precision and repeatability. For reconstructive surgery such as anastomosis, a supervised laparoscopic anastomosis using a surgical robot has recently been reported with an open-surgery approach using a large 3D camera. To push the technology into minimally-invasive setting, we report an endoscopic 3D system based on structured illumination technique to assist the surgical robot, particularly in anastomosis surgery. The recorded structural profile achieves a high depth quantification of 250 um for static objects, with 25 mm depth of field. The proposed system can be integrated into a flexible holding arm to move in accordance with the surgical robotic arm. We characterize the system performance using multiple porcine intestinal tissue samples with variations in surface textures, tissue pigmentation and thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.