Abstract

Prion (PrP) and amyloid-beta (Abeta) peptides are involved in the neuronal loss that occurs in Prion disorders (PrD) and Alzheimer's disease (AD), respectively, partially due to Ca(2+) dysregulation. Besides, the endoplasmic reticulum (ER) stress has an active role in the neurotoxic mechanisms that lead to these pathologies. Here, we analyzed whether the ER-mediated apoptotic pathway is involved in the toxic effect of synthetic PrP and Abeta peptides. In PrP106-126- and Abeta1-40-treated cortical neurons, the release of Ca(2+) through ER ryanodine (RyR) and inositol 1,4,5-trisphosphate (IP(3)R) receptors induces ER stress and leads to increased cytosolic Ca(2+) and reactive oxygen species (ROS) levels and subsequently to apoptotic death involving mitochondrial cytochrome c release and caspases activation. These results demonstrate that the early PrP- and Abeta-induced perturbation of ER Ca(2+) homeostasis is a death message that leads to neuronal loss, suggesting that the regulation of ER Ca(2+) levels may be a potential therapeutical target for PrD and AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.