Abstract

In previous papers, the isolation of brain soluble fractions able to modify neuronal Na+, K(+)-ATPase activity has been described. One of those fractions-peak I-stimulates membrane Na+, K(+)-ATPase while another-peak II-inhibits this enzyme activity, and has other ouabain-like properties. In the present study, synaptosomal membrane Na+, K(+)-ATPase was analyzed under several experimental conditions, using ATP or p-nitrophenylphosphate (p-NPP) as substrate, in the absence and presence of cerebral cortex peak II. Peak II inhibited K(+)-p-NPPase activity in a concentration dependent manner. Double reciprocal plots indicated that peak II uncompetitively inhibits K(+)-p-NPPase activity regarding substrate, Mg2+ and K+ concentration. Peak II failed to block the known K(+)-p-NPPase stimulation caused by ATP plus Na+. At various K+ concentrations, percentage K(+)-p-NPPase inhibition by peak II was similar regardless of the ATP plus Na+ presence, indicating lack of correlation with enzyme phosphorylation. Na+, K(+)-ATPase activity was decreased by peak II depending on K+ concentration. It is postulated that the inhibitory factor(s) present in peak II interfere(s) with enzyme activation by K+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call