Abstract

A paradigm shift towards agile and adaptive traffic signal control empowered with the massive growth of Big Data and Internet of Things (IoT) technologies is emerging rapidly for Intelligent Transportation Systems. Generally, an adaptive signal control system fine-tunes signal timing parameters based on pre-defined control hyperparameters using instantaneous traffic detection information. Once traffic pattern changes, those hyperparameters (e.g., maximum and minimum green times) need to be adjusted according to the evolution of traffic dynamics over a very short-term period. Such adjustment processes are usually conducted by professional and experienced traffic engineers. Here we present a human-in-the-loop parallel learning framework and its utilization in an end-to-end recommendation system that mimics and enhances professional signal control engineers' behaviors. The system has been deployed into a real-world application for an extended period in Hangzhou, China, where signal control hyperparameters are recommended based on large-scale multidimensional traffic datasets. Experimental evaluations demonstrate significant improvements in traffic efficiency through the use of our signal recommendation system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.