Abstract

The Mediterranean Sea is now recognized as a hotspot of global change, ranking among the fastest warming ocean regions. In order to project future plausible scenarios of marine biodiversity at the scale of the whole Mediterranean basin, the current challenge is to develop an explicit representation of the multispecies spatial dynamics under the combined influence of fishing pressure and climate change. Notwithstanding the advanced state-of-the-art modelling of food webs in the region, no previous studies have projected the consequences of climate change on marine ecosystems in an integrated way, considering changes in ocean dynamics, in phyto- and zoo-plankton productions, shifts in Mediterranean species distributions and their trophic interactions at the whole basin scale. We used an integrated modelling chain including a high-resolution regional climate model, a regional biogeochemistry model and a food web model OSMOSE to project the potential effects of climate change on biomass and catches for a wide array of species in the Mediterranean Sea. We showed that projected climate change would have large consequences for marine biodiversity by the end of the 21st century under a business-as-usual scenario (RCP8.5 with current fishing mortality). The total biomass of high trophic level species (fish and macroinvertebrates) is projected to increase by 5% and 22% while total catch is projected to increase by 0.3% and 7% by 2021-2050 and 2071-2100, respectively. However, these global increases masked strong spatial and inter-species contrasts. The bulk of increase in catch and biomass would be located in the southeastern part of the basin while total catch could decrease by up to 23% in the western part. Winner species would mainly belong to the pelagic group, are thermophilic and/or exotic, of smaller size and of low trophic level while loser species are generally large-sized, some of them of great commercial interest, and could suffer from a spatial mismatch with potential prey subsequent to a contraction or shift of their geographic range. Given the already poor conditions of exploited resources, our results suggest the need for fisheries management to adapt to future changes and to incorporate climate change impacts in future management strategy evaluation.

Highlights

  • Climate change and ocean acidification are altering oceans at rates that have been unprecedented over the last millennia (IPCC, 2014; Howes et al, 2015; Weatherdon et al, 2016)

  • During the historical period (1970–2005), CNRM-RCSM4 estimated that the annual mean Sea Surface Temperature (SST; 0–50 m depth) and the mean Sea Surface Salinity (SSS; 0–50 m depth) of the Mediterranean Sea were 17.6◦C (±1.3◦C; standard deviation) and 37.9 practical salinity unit (±0.7 PSU; standard deviation), respectively

  • This study projects climate change impacts on the biomass and fisheries catch at the whole Mediterranean scale under the high emission scenario RCP8.5

Read more

Summary

Introduction

Climate change and ocean acidification are altering oceans at rates that have been unprecedented over the last millennia (IPCC, 2014; Howes et al, 2015; Weatherdon et al, 2016). 10 earth system models projected a mean global decrease of 8.6% (±7.9%) under the highest emission scenario RCP8.5 (Representative Concentration Pathway) and a decrease of 2% (±4.1%) under the high mitigation scenario RCP2.6 by 2090, with large regional differences (Bopp et al, 2013) These changes are likely to trigger a global redistribution of the maximum catch potential (MCP) of fishing areas, with MCP and global revenue projected to decrease by 7.7 and 10.4%, respectively, by 2050 relative to 2000 when considering RCP8.5 (Lam et al, 2016). It turns out that climate change can significantly alter the availability and composition of commercial fisheries catches, thereby having socioeconomic implications for fisheries, markets, and consumers worldwide (Weatherdon et al, 2016)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call