Abstract
PurposeAutomatic defect detection is a fundamental and vital topic in the research field of industrial intelligence. In this work, the authors develop a more flexible deep learning method for the industrial defect detection.Design/methodology/approachThe authors propose a unified framework for detecting defects in industrial products or planar surfaces based on an end-to-end learning strategy. A lightweight deep learning architecture for blade defect detection is specifically demonstrated. In addition, a blade defect data set is collected with the dual-arm image collection system.FindingsNumerous experiments are conducted on the collected data set, and experimental results demonstrate that the proposed system can achieve satisfactory performance over other methods. Furthermore, the data equalization operation helps for a better defect detection result.Originality/valueAn end-to-end learning framework is established for defect detection. Although the adopted fully convolutional network has been extensively used for semantic segmentation in images, to the best knowledge of the authors, it has not been used for industrial defect detection. To remedy the difficulties of blade defect detection which has been analyzed above, the authors develop a new network architecture which integrates the residue learning to perform the efficient defect detection. A dual-arm data collection platform is constructed and extensive experimental validation are conducted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.