Abstract

Accurate and fast recognition of license plates is one of the most important challenges in the field of license plate recognition systems. Due to the high frame rate of surveillance cameras, old license plate recognition systems cannot be used in real-time applications. On the other hand, the presence of natural and artificial noise and different light and weather conditions make the detection and recognition process of these systems challenging. In this paper, an end-to-end method for efficiently detecting and recognizing plates is presented. In the proposed method, vehicles are first detected using a single-shot detector- (SSD-) based deep learning model in the video frames and the input images. This will increase the speed and accuracy in identifying the location of the plate in the given images. Then, the location of the plate is identified using the proposed architecture based on convolutional networks. Finally, using a deep convolutional network and long short-term memory (LSTM), the characters related to the plate are recognized. An advantage of our method is that the proposed deep network is trained using different images with different qualities that leads to high performance in detecting and recognizing plates. Also, considering that in the proposed method the vehicles are first detected and then the plate is detected in the vehicle image, there is no limit in the number of identified plates. Moreover, plate detection in the vehicle rectangle, instead of the whole frame, speeds up our method. The proposed method is evaluated using several databases. The first part of the evaluation focuses on robustness and recognition speed. The proposed method has the accuracy of 100% for vehicle detection, 100% for plate detection, and 99.37% for character recognition. In the second part of evaluation, the proposed method is evaluated in terms of overall speed. The experimental results witness that the proposed method is capable of processing 30 frames per second without losing any data and also outperforms several methods proposed in recent years, in terms of time and accuracy.

Highlights

  • Due to the increasing number of vehicles, manually controlling and monitoring traffic is time-consuming, costly, inaccurate, and sometimes impossible

  • In [36], we proposed a practical method that produces data for various phases of Iranian plate recognition system

  • This paper proposes a method based on generative adversarial networks (GAN) to produce plate images with different qualities

Read more

Summary

Introduction

Due to the increasing number of vehicles, manually controlling and monitoring traffic is time-consuming, costly, inaccurate, and sometimes impossible. This makes automatic vehicle plate recognition a recurrent research topic. Since the plate is the unique ID of vehicles, several prominent applications are found for automatic plate recognition, including traffic control, driving offence detection, vehicle speed estimation, self-driving vehicles, and surveillance [1] To this end, many cameras are installed in cities, roads, highways, borders, parking lots, and protected areas for better and more accurate control of vehicles. Many cameras are installed in cities, roads, highways, borders, parking lots, and protected areas for better and more accurate control of vehicles These cameras are constantly monitoring the images of passing vehicles. Vehicles and their plates cannot be detected and recognized without processing and analyzing these images

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.