Abstract
Atrial fibrillation (AF) is one of the most common abnormal heart rhythms, which is caused by the fast contraction of the two upper atria. Despite of the fact that convolutional neural network (CNN) has been applied to electrocardiogram analysis for AF rhythm, it cannot achieve the expected performance due to the lack of consideration for temporal features and the imbalance problem. In order to make the network concentrate on the learning of AF temporal features, we propose a residual-based temporal attention block (RTA-block). The RTA-block utilizes residual learning to generate temporal attention weights, which enhance informative features related to AF. Powered by the RTA-block, a residual-based temporal attention convolutional neural network (RTA-CNN) is further proposed for AF detection. The network can automatically focus on the parts with more sematic information to achieve better performance. In addition, we propose a novel exponential nonlinearity loss (EN-Loss), which addresses the imbalance problem by changing the nonlinearity of the loss function. We evaluated our framework on the single lead ECG classification dataset of The PhysioNet Computing in Cardiology Challenge 2017. The experimental results show that the proposed RTA-CNN with EN-Loss can obtain competitive results over the state-of-the-arts classification networks, which proves the method’s effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.