Abstract

The present study employed Schiff base chemistry to develop a set of seven highly effective organic hole-transporting materials (HTMs) developed by modification of anthracene-based core having dimethoxydiphenylamine group by end-capped engineering technique. Different acceptors were attached at terminals through thiophene spacers. The DFT methodology is utilized for investigating various important electrical, optical, and efficiency-related features of molecules. Enhanced planarity, along with greater attractive forces, was demonstrated by the proposed HTMs (A1D1-A1D7), which made them suitable for faster hole mobility. Furthermore, they demonstrated lower band gap energies (3.51 eV to 3.97 eV) and deep HOMO levels (-6.18 eV to -6.00 eV), minimum excitation energy (2.43 eV), 82 % intrinsic charge transport, lower reorganization energy of electrons which improves the charge transfer capabilities of the PSCs. The exceptional solubility of the HTMs, as shown by their high dipole moments and more negative values of solvation-free energies, makes them appropriate for the manufacturing of multilayered films. Moreover, all newly proposed HTMs' acceptor terminals exhibited great conjugation as well as efficient π-π stacking, as evidenced by the dihedral angle across the spacer thiophene and EWD acceptors ranging from 1.09◦ to 21.26◦ and proved to be more potential candidates for future research in PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.