Abstract
Mel Frequency Cepstral Coefficients (MFCCs) and Perceptual linear prediction coefficients (PLPCs) are widely casted nonlinear vocal parameters in majority of the speaker identification, speaker and speech recognition techniques as well in the field of emotion recognition. Post 1980s, significant exertions are put forth on for the progress of these features. Considerations like the usage of appropriate frequency estimation approaches, proposal of appropriate filter banks, and selection of preferred features perform a vital part for the strength of models employing these features. This article projects an overview of MFCC and PLPC features for different speech applications. The insights such as performance metrics of accuracy, background environment, type of data, and size of features are inspected and concise with the corresponding key references. Adding more to this, the advantages and shortcomings of these features have been discussed. This background work will hopefully contribute to floating a heading step in the direction of the enhancement of MFCC and PLPC with respect to novelty, raised levels of accuracy, and lesser complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computational and Theoretical Nanoscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.