Abstract

In this paper, we describe a novel catalytic enantioselective synthetic route to the bicyclic tetraene ester 3, a key intermediate for the synthesis of the naturally occurring adenosine diphosphate transport inhibitor atractyligenin (2). The success of this route depended on the extension of the oxazaborolidine-catalyzed (CBS) reduction of an achiral β-stannyl-substituted α,β-enone (6c) to form a chiral allylic alcohol and further steps to effect simultaneous transfer of chirality, carbocycle formation, and quaternary stereocenter formation, which led to the triene acid 13. The conversion of 13 to 3 was carried out efficiently by a four-step sequence involving iodolactonization, double elimination, and esterification. The combined use of the CBS reduction of appropriate α,β-enones and Claisen rearrangement provides an important synthetic avenue to many types of natural products containing quaternary stereocenters embedded in cyclic networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.