Abstract

Dispersal, the tendency for organisms to reproduce away from their parents, influences many evolutionary and ecological processes, from speciation and extinction events, to the coexistence of genotypes within species or biological invasions. Understanding how dispersal evolves is crucial to predict how global changes might affect species persistence and geographical distribution. The factors driving the evolution of dispersal have been well characterized from a theoretical standpoint, and predictions have been made about their respective influence on, for example, dispersal polymorphism or the emergence of dispersal syndromes. However, the experimental tests of some theories remain scarce partly because a synthetic view of theoretical advances is still lacking. Here, we review the different ingredients of models of dispersal evolution, from selective pressures and types of predictions, through mathematical and ecological assumptions, to the methods used to obtain predictions. We provide perspectives as to which predictions are easiest to test, how theories could be better exploited to provide testable predictions, what theoretical developments are needed to tackle this topic, and we place the question of the evolution of dispersal within the larger interdisciplinary framework of eco-evolutionary dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call