Abstract

We describe the development and application of a time-dependent model of the solar wind. The model is empirically driven, starting from magnetic maps created with the Air Force Data Assimilative Photospheric flux Transport (ADAPT) model at a daily cadence. Potential field solutions are used to model the coronal magnetic field, and an empirical specification is used to develop boundary conditions for an MHD model of the solar wind. The time-dependent MHD simulation shows classic features of stream structure in the interplanetary medium that are seen in steady-state models; it also shows time evolutionary features that do not appear in a steady-state approach. The model results compare reasonably well with 1 AU OMNI observations. Data gaps when SOLIS magnetograms were unavailable hinder the model performance. The reasonable comparisons with observations suggest that this modeling approach is suitable for driving long term models of the outer heliosphere. Improvements to the ingestion of magnetograms in flux transport models will be necessary to apply this approach in a time-dependent space weather model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call