Abstract
Band structure calculations based on density functional theory (DFT) with local or gradient-corrected exchange-correlation potentials are known to severely underestimate the band gap of semiconducting and insulating materials. Alternative approaches have been proposed: from semiempirical setups, such as the so-called DFT+U, to hybrid density functionals using a fraction of nonlocal Fock exchange, to modifications of semilocal density functionals. However, the resulting methods appear to be material dependent and lack theoretical rigor. The rigorous many-body perturbation theory based on GW methods provides accurate results but at a very high computational cost. Hereby, we show that a linear correlation between the electronic band gaps obtained from standard DFT and GW approaches exists for most materials and argue that (1) this is a strong indication that the problem of predicting band gaps from standard DFT calculation arises from the assignment of a physical meaning to the Kohn–Sham energy levels rather...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.