Abstract

We investigated the aggregation model of coexistence as a potential mechanism explaining patterns of coexistence between container mosquitoes Aedes albopictus and Aedes aegypti in southern Florida, USA. Aedes aegypti coexists with the invasive A. albopictus in many locations despite being an inferior resource competitor under most conditions. In agreement with aggregation theory we observed significant intraspecific aggregation of A. albopictus in all six field sites sampled in southern Florida in 2009. Quantitative results suggest that larval distributions of A. albopictus across containers are sufficiently aggregated to permit persistence of the inferior competitor A. aegypti. We tested whether observed levels of A. albopictus aggregation would significantly improve A. aegypti population performance in a controlled laboratory competition experiment manipulating A. albopictus aggregation while holding mean densities constant. We quantified A. aegypti's estimated rate of population change for replicate, multi-container cohorts in response to increasing A. albopictus aggregation across the cohorts. Aedes albopictus aggregation treatments produced J statistics for aggregation that spanned the range observed in the field study. We demonstrate a positive linear relationship between intraspecific aggregation of the superior competitor A. albopictus and estimated rate of population change for cohorts of the inferior A. aegypti. Thus, aggregation of A. albopictus at levels comparable to those observed in nature appears to be sufficient to reduce significantly the competitive impact of A. albopictus on multi-container cohorts of A. aegypti, and may therefore contribute to local coexistence of these competitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.