Abstract
Software defect prediction has attracted much attention of researchers in software engineering. At present, feature selection approaches have been introduced into software defect prediction, which can improve the performance of traditional defect prediction (known as within-project defect prediction, WPDP) effectively. However, the studies on feature selection are not sufficient for cross-project defect prediction (CPDP). In this paper, we use the feature subset selection and feature ranking approaches to explore the effectiveness of feature selection for CPDP. An empirical study is conducted on NASA and PROMISE datasets. The results show that both the feature subset selection and feature ranking approaches can improve the performance of CPDP. Therefore, we should select the representative feature subset or set a reasonable proportion of selected features to improve the performance of CPDP in future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.