Abstract
With the rising growth of the telecommunication industry, the customer churn problem has grown in significance as well. One of the most critical challenges in the data and voice telecommunication service industry is retaining customers, thus reducing customer churn by increasing customer satisfaction. Telecom companies have depended on historical customer data to measure customer churn. However, historical data does not reveal current customer satisfaction or future likeliness to switch between telecom companies. The related research reveals that many studies have focused on developing churner prediction models based on historical data. These models face delay issues and lack timelines for targeting customers in real-time. In addition, these models lack the ability to tap into Arabic language social media for real-time analysis. As a result, the design of a customer churn model based on real-time analytics is needed. Therefore, this study offers a new approach to using social media mining to predict customer churn in the telecommunication field. This represents the first work using Arabic Twitter mining to predict churn in Saudi Telecom companies. The newly proposed method proved its efficiency based on various standard metrics and based on a comparison with the ground-truth actual outcomes provided by a telecom company.
Highlights
Global competition for telecommunication services drives companies to enhance their customers’ satisfaction
This paper addresses the following problems related to customer churn prediction models:
Answering the research question (RQ) above, we explored the areas related to this research, customer satisfaction, customer churn and social media mining
Summary
Global competition for telecommunication services drives companies to enhance their customers’ satisfaction. Extensive research correlates customer satisfaction with customer loyalty and customer churn [1,2,3]. Customer churn is defined in the telecommunication field as transferring customers from one telecom company to another [4]. Recent research shows that the cost of having a new customer is more than the cost of keeping an existing customer [5]. Companies are more concerned with keeping customers than ever before. As seen in the literature review section, many studies have been done in various industries in CRM (customer relationship management) to manage customer retention and develop an efficient model to predict the churners
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.