Abstract
Data mining techniques are commonly used to construct models for identifying software modules that are most likely to contain faults. In doing so, an organization’s limited resources can be intelligently allocated with the goal of detecting and correcting the greatest number of faults. However, there are two characteristics of software quality datasets that can negatively impact the effectiveness of these models: class imbalance and class noise. Software quality datasets are, by their nature, imbalanced. That is, most of a software system’s faults can be found in a small percentage of software modules. Therefore, the number of fault-prone, fp, examples (program modules) in a software project dataset is much smaller than the number of not fault-prone, nfp, examples. Data sampling techniques attempt to alleviate the problem of class imbalance by altering a training dataset’s distribution. A program module contains class noise if it is incorrectly labeled. While several studies have been performed to evaluate data sampling methods, the impact of class noise on these techniques has not been adequately addressed. This work presents a systematic set of experiments designed to investigate the impact of both class noise and class imbalance on classification models constructed to identify fault-prone program modules. We analyze the impact of class noise and class imbalance on 11 different learning algorithms (learners) as well as 7 different data sampling techniques. We identify which learners and which data sampling techniques are most robust when confronted with noisy and imbalanced data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.