Abstract

AbstractGiven the implicitly parallel nature of population-based heuristics, many contributions reporting on parallel and distributed models and implementations of these heuristics have appeared so far. They range from the most natural and simple ones, i.e. fitness-level embarrassingly parallel implementations (where, for instance, each candidate solution is treated as an independent agent and evaluated on a dedicated processor), to many more sophisticated variously interacting multi-population systems. In the last few years, researchers have dedicated a growing attention to Particle Swarm Optimization (PSO), a bio-inspired population based heuristic inspired by the behavior of flocks of birds and shoals of fish, given its extremely simple implementation and its high intrinsical parallelism. Several parallel and distributed models of PSO have been recently defined, showing interesting performances both on benchmarks and real-life applications. In this chapter we report on four parallel and distributed PSO methods that have recently been proposed. They consist in a genetic algorithm whose individuals are co-evolving swarms, an “island model”- based multi-swarm system, where swarms are independent and interact by means of particle migrations at regular time steps, and their respective variants enriched by adding a repulsive component to the particles. We show that the proposed repulsive multi-swarm system has a better optimization ability than all the other presented methods on a set of hand-tailored benchmarks and complex real-life applications.KeywordsRoot Mean Square ErrorParticle Swarm OptimizationParticle Swarm Optimization MethodStandard Particle Swarm OptimizationParticle Swarm Optimization VariantThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.