Abstract
This paper presents an empirical study of affine invariant feature detectors to perform matching on video sequences of people with non-rigid surface deformation. Recent advances in feature detection and wide baseline matching have focused on static scenes. Video frames of human movement captures highly non-rigid deformation such as loose hair, cloth creases, skin stretching and free flowing clothing. This study evaluates the performance of three widely used feature detectors for sparse temporal correspondence on single view and multiple view video sequences. Quantitative evaluation is performed of both the number of features detected and their temporal matching against and without ground truth correspondences. Recall-accuracy analysis of feature matching is reported for temporal correspondence on single view and multiple view sequences of people with variation in clothing and movement. This analysis identifies that existing feature detection and matching algorithms are unreliable for fast movement with common clothing. For patterned clothing techniques such as SIFT produce reliable correspondence. (10 pages)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.