Abstract

The compulsion to provide reliable electric power for sustenance of socio-economic development is vital for most of southern Africa states. The demand for the resource in the region is anticipated to escalate in the next couple of decades. However, there is a deleterious effect of fire-induced power disruption which is observed in many countries. The mechanism through which the disruption occurs is currently a subject of current research in electric power distribution. It has been observed that streamer initiated conduction channel provides a means of high voltage electric power flashover. The main purpose of this study is to determine the empirical expression for breakdown electric field strength of vegetation fires. The breakdown field was measured from vegetation fuel (Peltophorum africanum) flames at different combustion temperatures. The data is essential for validation of simulation schemes which are necessary for evaluation of power grid systems reliability under extreme wildfire weather conditions. In this study, Peltophorum africanum fuels were ignited in a cylindrically shaped steel burner which was fitted with a Type-K thermocouple to measure flame temperature. The fuels consisted of dried fine twig (≤0.8 mm Ø) and limb wood (≥10 mm Ø) litter. Two copper pinned-electrodes supported by retort stands were mounted to the burner and energized to a high voltage. This generated a strong electric field sufficient to initiate dielectric breakdown in the flames. The measured electric field strength was plotted against flame temperatures and fit with a non-linear relation to give the empirical relation.

Highlights

  • Climate change has deleteriously affected terrestrial ecosystems

  • The main purpose of this study is to determine the empirical expression for breakdown electric field strength of vegetation fires

  • The data is essential for validation of simulation schemes which are necessary for evaluation of power grid systems reliability under extreme wildfire weather conditions

Read more

Summary

Introduction

Climate change has deleteriously affected terrestrial ecosystems. Its concomitant recurrent episodes of droughts and extreme heat have led to environmental conditions, which are conducive to the occurrence of frequent large wildfires [1]. This affects the reliability of electrical power supply as this may lead to the utility disruption. A significant number of fire-induced power outages have been reported in several countries [2] [3] [4]. In South Africa, vegetation fires are responsible for about 22% of annual transmission line faults [4]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.