Abstract

The Job-Shop Scheduling Problem (JSSP) is well known as one of the most difficult NP-hard combinatorial optimization problems. Several GA-based approaches have been reported for the JSSP. Among them, there is a parameter-free genetic algorithm (PfGA) for JSSP proposed by Matsui et al., based on an extended version of PfGA, which uses random keys for representing permutation of operations in jobs, and uses a hybrid scheduling for decoding a permutation into a schedule. They reported that their algorithm performs well for typical benchmark problems, but the experiments were limited to a small number of problem instances. This paper shows the results of an empirical performance evaluation of the GA for a wider range of problem instances. The results show that the GA performs well for many problem instances, and the performance can be improved greatly by increasing the number of subpopulations in the parallel distributed version.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.