Abstract

AbstractWe describe an empirical model of energetic ion plasma (∼20–400 keV/q) that is constructed from measurements taken by the Magnetospheric Ion Composition Spectrometer (MICS) instrument that flew on the CRRES spacecraft. This is a unique data set in that it provides energetic ion composition in the near‐equatorial ring current region during a very active solar maximum. The model database is binned by energy, equatorial pitch angle, L shell, and magnetic local time and provides unidirectional, differential number fluxes of the major ionic constituents of the inner magnetosphere, such as protons (H+), singly charged oxygen (O+), and singly charged helium (He+). The H+ and O+ model fluxes are examined in detail and are consistent with well‐known particle transport effects (e.g., adiabatic heating). We also validate these model fluxes against a number of other ion plasma models that are available in the literature. The primary finding is the elevated levels of energetic O+ flux during the CRRES era. We attribute this to a solar cycle effect, related to the enhanced upwelling and oxygen outflow from the ionosphere that occurs during solar maximum, driven by elevated solar extreme ultraviolet radiation. We briefly discuss the implications that the enhanced O+ environment during the CRRES era may have for other results derived from CRRES observations (e.g., statistical wave distributions).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call