Abstract

The effect of the resilience of the steel studs on the sound insulation of steel stud cavity walls can be modeled as an equivalent translational compliance in simple models for predicting the sound insulation of walls. Recent numerical calculations have shown that this equivalent translational compliance varies with frequency. This paper determines the values of the equivalent translational compliance of steel studs which make a simple sound insulation theory agree best with experimental sound insulation data for 126 steel stud cavity walls with gypsum plaster board on each side of the steel studs and sound absorbing material in the wall cavity. These values are approximately constant as a function of frequency up to 400 Hz. Above 400 Hz they decrease approximately as a non-integer power of the frequency. The equivalent translational compliance also depends on the mass per unit surface area of the cladding on each side of the steel studs and on the width of the steel studs. Above 400 Hz, this compliance also depends on the stud spacing. The best fit approximation is used with a simple sound insulation prediction model to predict the sound insulation of steel stud cavity walls whose sound insulation has been determined experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call