Abstract

The double cleavage drilled compression (DCDC) geometry is useful for creating large cracks in a material in a controlled manner. Several models for estimating fracture toughness from DCDC measurements have been proposed, but each is suitable for a subset of geometries and material properties. In this work, a series of finite element fracture simulations are performed over a range of sample widths, hole sizes, heights, Young’s moduli, Poisson’s ratios, critical stress intensity factors, and boundary conditions. Analyzing the simulation results, fracture toughness is found to be a simple function of sample width, hole size, and an extrapolated stress at zero crack length obtained from a linear fit of the data. Experimental results in the literature are found to agree with this simple relationship.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call