Abstract

Land-use change (LUC) is a major influence on soil organic carbon (SOC) stocks and the global carbon cycle. LUC from conventional agricultural to biomass crops has increased in Britain but there is limited understanding of the effects on SOC stocks. Results from paired plot studies investigating site-specific effects document both increasing and decreasing SOC stocks over time. Such variation demonstrates the sensitivity of SOC to many factors including environmental conditions. Using a chronosequence of 93 biomass crop sites in England and Wales, mainly of 1–14 y age, empirical models were developed of SOC trajectory following LUC from arable and grassland to short rotation coppice (SRC) willow and Miscanthus production. SOC stocks were calculated for each site using a fixed sampling depth of 30 cm and changes were estimated by comparing with typical pre-conversion SOC stocks. Most LUCs had no demonstrable net effect on SOC stocks. An estimated net SOC loss of 45.2 ± 24.1 tonnes per hectare (±95% confidence intervals) occurred after 14 y following LUC from grassland to SRC willow. Soil texture and climate data for each site were included in multivariable models to assess the influence of different environmental conditions on SOC trajectory. In most cases the addition of explanatory variables improved the model fit. These models may provide some preliminary estimates of more region-specific changes in SOC following LUC. However, the model fit did not improve sufficiently as to provide a basis for adopting a more targeted LUC strategy for lignocellulosic biomass crop production.

Highlights

  • Soils globally represent the most significant long term organic carbon store in terrestrial ecosystems, containing 4.5 times as much carbon (C) as all living biomass [1] and 3.1 times as much as the atmosphere [2]

  • The forcedintercept CRFgen model shows no demonstrable overall change in Soil organic carbon (SOC) for this Land-use change (LUC), with an estimate of 19.3 ± 19.8 t haÀ1 after 14 y and 30.3 ± 30.3 t haÀ1 after 22 y (Fig. 3aeb). These results indicate that, after initial losses, SOC stocks recover during years 2e14 with a greater recovery after 22 y

  • There is no evidence for any overall net effect on SOC relative to pre-conversion SOC stocks after 14 or 22 y

Read more

Summary

Introduction

Soils globally represent the most significant long term organic carbon store in terrestrial ecosystems, containing 4.5 times as much carbon (C) as all living biomass [1] and 3.1 times as much as the atmosphere [2]. Land-use change (LUC) from natural to agro-ecosystems has a major impact on this balance and is the second largest source of anthropogenic greenhouse gas (GHG) emissions after fossil fuel combustion [3]. This vulnerability to human impact is recognised in Articles 3.3 and 3.4 of the Kyoto Protocol with signatory states required to report SOC stock changes resulting from LUC in their annual GHG inventories. Studies indicate that lignocellulosic biomass crops require fewer inputs and can grow on marginal land [7,12,13] but concerns remain over competing land-use where purpose-grown biomass crops will replace food production

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.