Abstract

We have performed molecular dynamics (MD) simulations using the three low index surfaces of Al to determine the variation of the surface energy as a function of deformation and temperature. We have also developed an empirical formulation for the surface free energy as a function of deformation. The observed difference between the numerical and analytical results has led us to divide the deformation into a mechanical and a thermal contribution. From this observation, we have obtained an expression for the surface free energy placing the temperature dependence on the bulk and surface elastic constants. Our simulations permitted us to analyze the multilayer relaxation for the particular surfaces studied. Namely, we found the first atomic layer of the Al(1 0 0) surface to be in slight contraction, an alternation between contraction and expansion in the first atomic layers of the Al(1 1 0) surface and slight expansion in the first atomic layer of the Al(1 1 1) surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.