Abstract
In the context of multiperiod tail risk (i.e., VaR and ES) forecasting, we provide a new semiparametric risk model constructed based on the forward-looking return moments estimated by the stochastic volatility model with price jumps and the Cornish–Fisher expansion method, denoted by SVJCF. We apply the proposed SVJCF model to make multiperiod ahead tail risk forecasts over multiple forecast horizons for S&P 500 index, individual stocks and other representative financial instruments. The model performance of SVJCF is compared with other classical multiperiod risk forecasting models via various backtesting methods. The empirical results suggest that SVJCF is a valid alternative multiperiod tail risk measurement; in addition, the tail risk generated by the SVJCF model is more stable and thus should be favored by risk managers and regulatory authorities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.