Abstract
Estimating the potential performance of parallel applications on the yet-to-be-designed future many cores is very speculative. The simple models proposed by Amdahl's law (fixed input problem size) or Gustafson's law (fixed number of cores) do not completely capture the scaling behaviour of a multi-threaded (MT) application leading to over estimation of performance in the many-core era. On the other hand, modeling many-core by simulation is too slow to study the applications performance.In this paper, we propose a more refined but still tractable, high level empirical performance model for multi-threaded applications, the Serial/Parallel Scaling (SPS) Model to study the scalability and performance of application in many-core era. SPS model learns the application behavior on a given architecture and provides realistic estimates of the performance in future many-cores. Considering both input problem size and the number of cores in modeling, SPS model can help in making high level decisions on the design choice of future many-core applications and architecture. We validate the model on the Many-Integrated Cores (MIC) xeon-phi with 240 logical cores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.