Abstract

The estimation of portfolio value-at-risk (VaR) requires a good estimate of the covariance matrix. As it is well known that a sample covariance matrix based on some historical rolling window is noisy and is a poor estimate for the high-dimensional population covariance matrix, to estimate the conditional portfolio VaR we develop a framework using the dynamic conditional covariance model, within which various de-noising tools are employed for the estimation of the unconditional covariance target. Various de-noising treatments in our study include shrinkage methods, random matrix theory methods and regularization methods. We validate the model empirically by using various coverage tests and loss function measures and discover that the choice of de-noising treatments for the covariance target plays a critical role in measuring the accuracy of the dynamic portfolio VaR estimates. In our large-scale empirical evaluation of de-noising tools, the regularization methods seem to produce the poorest VaR estimates under various coverage tests and loss function measures, while the shrinkage methods and the random matrix theory methods produce comparable results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.