Abstract

The empirical orthogonal function decomposition is used to analyze time records of AVHRR sea surface temperature observations of the western North Atlantic from 32.9° to 43.6°N, 62.7° to 76.3°W. A manually declouded dataset covering the spring of 1985 is analyzed. The majority (80%) of the variance about the mean is accounted for by an empirical eigenfunction, which is identified with seasonal warming. This eigenfunction shows that the shelf water, excluding Georges Bank, warms the most rapidly; the surface water of the Gulf of Maine warms a little less rapidly and the Gulf Stream and Sargasso Sea surface water warm the least rapidly. The SST of the Gulf Stream is also shown to behave more like that at 30°N than like Sargasso Sea water immediately to its south (∼35°N). The second EOF is found to be a small correction to the general warming rate described by the first EOE The third and fourth EOFs are determined primarily by meander propagation. Observatiods with partial cloud cover from the period 1985 to 1991 are also analyzed. Again, the dominant effect is identified as seasonal warming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.