Abstract
Anthropometric data are assumed to have a Gaussian (Normal) distribution, but if non-Gaussian, accommodation estimates are affected. When data are limited, users may choose to combine anthropometric elements by Combining Percentiles (CP) (adding or subtracting), despite known adverse effects. This study examined whether global anthropometric data are Gaussian distributed. It compared the Median Correlation Method (MCM) of combining anthropometric elements with unknown correlations to CP to determine if MCM provides better estimates of percentile values and accommodation. Percentile values of 604 male and female anthropometric data drawn from seven countries worldwide were expressed as standard scores. The standard scores were tested to determine if they were consistent with a Gaussian distribution. Empirical multipliers for determining percentile values were developed.In a test case, five anthropometric elements descriptive of seating were combined in addition and subtraction models. Percentile values were estimated for each model by CP, MCM with Gaussian distributed data, or MCM with empirically distributed data. The 5th and 95th percentile values of a dataset of global anthropometric data are shown to be asymmetrically distributed. MCM with empirical multipliers gave more accurate estimates of 5th and 95th percentiles values. Anthropometric data are not Gaussian distributed. The MCM method is more accurate than adding or subtracting percentiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.