Abstract

ABSTRACT The recurring transient outbursts in low-mass X-ray binaries (LMXBs) provide ideal laboratories to study the accretion process. Unlike their supermassive relatives, LMXBs are far too small and distant to be imaged directly. Fortunately, phase-resolved spectroscopy can provide an alternative diagnostic to study their highly complex, time-dependent accretion discs. The primary spectral signature of LMXBs are strong, disc-formed emission lines detected at optical wavelengths. The shape, profile, and appearance/disappearance of these lines change throughout a binary orbit, and thus, can be used to trace how matter in these discs behaves and evolves over time. By combining a Swift multiwavelength monitoring campaign, phase-resolved spectroscopy from the Gran Telescopio Canarias (GTC) and Liverpool Telescope, and modern astrotomography techniques, we find a clear empirical connection between the line emitting regions and physical properties of the X-rays heating the disc in the black hole LMXB MAXI J1820+070 during its 2018 outburst. In this paper, we show how these empirical correlations can be used as an effective observational tool for understanding the geometry and structure of a LMXB accretion disc and present further evidence for an irradiation-driven warped accretion disc present in this system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call