Abstract
The TreeRank algorithm was recently proposed in [1] and [2] as a scoring-based method based on recursive partitioning of the input space. This tree induction algorithm builds orderings by recursively optimizing the Receiver Operating Characteristic curve through a one-step optimization procedure called LeafRank. One of the aim of this paper is the in-depth analysis of the empirical performance of the variants of TreeRank/LeafRank method. Numerical experiments based on both artificial and real data sets are provided. Further experiments using resampling and randomization, in the spirit of bagging and random forests are developed [3, 4] and we show how they increase both stability and accuracy in bipartite ranking. Moreover, an empirical comparison with other efficient scoring algorithms such as RankBoost and RankSVM is presented on UCI benchmark data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.