Abstract
This work presents an empirical analysis of popular scenario generation methods for stochastic optimization, including quasi-Monte Carlo, moment matching, and methods based on probability metrics, as well as a new method referred to as Voronoi cell sampling. Solution quality is assessed by measuring the error that arises from using scenarios to solve a multi-dimensional newsvendor problem, for which analytical solutions are available. In addition to the expected value, the work also studies scenario quality when minimizing the expected shortfall using the conditional value-at-risk. To quickly solve problems with millions of random parameters, a reformulation of the risk-averse newsvendor problem is proposed which can be solved via Benders decomposition. The empirical analysis identifies Voronoi cell sampling as the method that provides the lowest errors, with particularly good results for heavy-tailed distributions. A controversial finding concerns evidence for the ineffectiveness of widely used methods based on minimizing probability metrics under high-dimensional randomness.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.