Abstract

Machine learning techniques and algorithms are employed in many application domains such as financial applications, recommendation systems, medical diagnosis systems, and self-driving cars. They play a crucial role in harnessing the power of Big Data being produced every day in our digital world. In general, building a well-performing machine learning pipeline is an iterative and complex process that requires a solid understanding of various techniques that can be used in each component of the machine learning pipeline. Feature engineering(FE) is one of the most time-consuming steps in building machine learning pipelines. It requires a deep understanding of the domain and data exploration to discover relevant hand-crafted features from raw data. In this work, we empirically evaluate the impact of integrating an automated feature extraction tool (AutoFeat) into two automated machine learning frameworks, namely, Auto-Sklearn and TPOT, on their predictive performance. Besides, we discuss the limitations of AutoFeat that need to be addressed in order to improve the predictive performance of the automated machine learning frameworks on real-world datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.