Abstract

In this paper, a classification method named explicit Markov model is applied for text classification. Currently some machine learning technologies, such as support vector machine (SVM), have been discussed widely in text classification. However, these methods consider that any two features are independent and ignore the language structure information. Hidden Markov model is a powerful tool for sequence tagging problems. This paper presents a new method called explicit Markov model (EMM) which is based on HMM for text classification. EMM make better use of the context information between the observation symbols. Our experiments are conducted on three datasets: Reuter's 21578 R8 dataset, WebKB and Fudan University Chinese text classification corpus. Experimental results show that the performance of EMM is comparable to SVM for text classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.