Abstract

With the continuous spread of COVID-19 (coronavirus disease 2019), a large number of medical protective suits (PS) have been used and discarded, causing great damage to the ecological environment. The main component of PS is polypropylene plastic, which will enter the oceans, rivers, and animals with groundwater and will not decompose for hundreds of years. Therefore, this global health crisis not only affects the health and economy of the world’s population now but will also continue to disrupt our daily lives after the pandemic ends. The main objective of this study is to explore an effective method to reduce the biological and environmental hazards of medical waste by combining PS with concrete. Due to the excessive size of the PS, protective suit fibers (PSF) were obtained from PS by cutting. To investigate the possibility of using PS in concrete, a series of experiments were conducted, including a physical parameter test, compression test, split tensile test, ultrasonic pulse velocity test, scanning electron microscope (SEM), and finite element simulation. The results indicated that the introduction of PSF significantly enhanced the mechanical properties of concrete, and the maximum compressive strength and splitting tensile strength increased by 7.3% and 43.6%, respectively. The ultrasonic pulse velocity and density of concrete containing PSF decreased compared with the control group. The images of SEM show that PSF binds tightly to the cement matrix and hinders the propagation of micro-cracks. The introduction of PS into the concrete material leads to the improvement of the mechanical properties of concrete and the improvement of the overall quality of the concrete, which is of great significance for reducing the damage of medical waste to the environment. The originality of this work is that polypropylene fibers acquired from PS were put into concrete for the first time for performance testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.