Abstract

Here in, we present the extensive analysis of the parameters associated with structural, electronic, optical and mechanical properties of HC(NH2)2PbI3 or FAPbI3 (FA = Formamidinium) by using full potential linearized augmented plane wave method (FP-LAPW) within framework on the density functional theory. The band structure shows that FAPbI3 has a direct band gap (1.44 eV) at the symmetry point R (0.5, 0.5, 0.5) and are in best agreement with experimental data. The strong hybridization of s orbitals of Pb and p orbitals of I in valance band plays an important role in the structural stability. From the mechanical constants, we have observed that this is ductile in nature and perfect use for photovoltaic applications. Further, FAPbI3 photovoltaic device has been prepared and device parameters have discussed for ZnO, ZnS, ZnSe, ZnTe and CdS buffer layers. The calculated results for FAPbI3 thin layer solar cell show maximum efficiency (20.48% and 20.77%) with ZnS and CdS buffer layers respectively. The proposed results further validate the prospects of methylammonium (MA) free perovskites and it would be persistent and consistent with the flexible substratum. These are the main features of commercialization perovskite solar cells. Thus, promoting the evolution of cubic FAPbI3, for achieving high performance-based optoelectronic devices and will pave a new path in solar cell industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.